Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2'-Dihydroxybiphenyl-3,3'-dicarbaldehyde dioxime

Ekaterina Golovnia, ${ }^{\text {a }}$ Elena V. Prisyazhnaya, ${ }^{\text {b }}$ * Turganbay S. Iskenderov, ${ }^{\text {c Matti Haukka }}{ }^{\text {d }}$ and Igor O. Fritsky ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Kiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, ${ }^{\mathbf{b}}$ Kyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Ave., 31, 03680 Kiev, Ukraine, ${ }^{\text {c }}$ Karakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and ${ }^{\mathbf{d}}$ Department of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland Correspondence e-mail: eprisyazhnaya@ukr.net

Received 20 July 2009; accepted 23 July 2009
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.056 ; w R$ factor $=0.146$; data-to-parameter ratio $=14.0$.

The molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$, lies across a crystallographic inversion centre situated at the mid-point of the $\mathrm{C}-\mathrm{C}$ intra-annular bond. The molecule is not planar, the dihedral angle between the aromatic rings being 50.1 (1) ${ }^{\circ}$. The oxime group is in an E position with respect to the -OH group and forms an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into chains propagating along [001]. The crystal structure is further stabilized by intermolecular stacking interactions between the rings [centroid-to-centroid distance $=3.93(1) \AA$ A , resulting in layers parallel to the $b c$ plane.

Related literature

For the use of oximes as chelating ligands in coordination and analytical chemistry and extraction metallurgy, see: Kukushkin et al. (1996); Chaudhuri (2003). For the use of oxime ligands to obtain polynuclear compounds in the fields of molecular magnetism and supramolecular chemistry, see: Cervera et al. (1997); Costes et al. (1998). Oxime-containing ligands have been found to efficiently stabilize high oxidation states of metal ions such as $\mathrm{Cu}(\mathrm{III})$ and $\mathrm{Ni}(\mathrm{III})$, see: Fritsky et al. (2006); Kanderal et al. (2005). For $\mathrm{C}=\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ bond lengths in oximes, see: Mokhir et al. (2002); Onindo et al. (1995); Sliva et al. (1997). For the synthesis of $2,2^{\prime}$ -dihydroxybiphenyl-3,3'-dicarbaldehyde, see: Wünnemann et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$

$$
V=1222.2(2) \AA^{3}
$$

$M_{r}=272.26$
$Z=4$
Monoclinic, $C 2 / c$ 。
Mo $K \alpha$ radiation
$a=24.2780$ (14) £
$\mu=0.11 \mathrm{~mm}^{-1}$
$b=3.9279$ (4) A
$T=120 \mathrm{~K}$
$c=16.6466$ (12) \AA
$0.19 \times 0.09 \times 0.06 \mathrm{~mm}$
$\beta=129.652(6)^{\circ}$

4331 measured reflections
Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$ 812 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.073$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.146$
H atoms treated by a mixture of
$S=1.02$
1388 reflections
99 parameters
independent and constrained refinement
$\Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 1$	$0.91(3)$	$1.79(3)$	$2.609(2)$	$148(2)$
O2-H2 $\cdots 1^{\mathrm{i}}$	$1.00(3)$	$1.96(3)$	$2.871(2)$	$151(3)$

Symmetry code: (i) $-x+1,-y,-z$.
Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZOISCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42-2008).

[^0]
References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. \& Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395-401.
Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.
Costes, J.-P., Dahan, F., Dupuis, A. \& Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307-1314.
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., SwiatekKozlowska, J., Gumienna-Kontecka, E. \& Meyer, F. (2006). Chem. Commun. pp. 4125-4127.
Kanderal, O. M., Kozłowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. \& Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.
Kukushkin, V. Yu., Tudela, D. \& Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333-362.

Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. \& Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. \& Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. \& Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287294.

Wünnemann, S., Fröhlich, R. \& Hoppe, D. (2008). Eur. J. Org. Chem. pp. 684692.

supplementary materials

2,2'-Dihydroxybiphenyl-3,3'-dicarbaldehyde dioxime

E. Golovnia, E. V. Prisyazhnaya, T. S. Iskenderov, M. Haukka and I. O. Fritsky

Comment

Oximes are a traditional class of chelating ligands widely used in coordination and analytical chemistry and extraction metallurgy (Kukushkin et al., 1996; Chaudhuri, 2003). Due to marked ability to from bridges between metal ions oxime ligands may be used for obtaining polynuclear compounds in the field of molecular magnetism and supramolecular chemistry (Cervera et al., 1997; Costes et al., 1998). Also, the oxime ligands are strong donors and therefore the oxime-containing ligands were found to efficiently stabilize high oxidation states of metal ions like $\mathrm{Cu}(\mathrm{III})$ and Ni (III) (Kanderal et al., 2005; Fritsky et al., 2006). The presence of additional donor groups together with the oxime group in the ligand molecule may result in significant increase of chelating efficiency and ability to form polynuclear complexes. The present investigation is dedicated to the study of the molecular structure of the title compound (I) which is a new polynuclear ligand containing both oxime and phenolic functions.

Molecules of \mathbf{I} lie across a crystallographic inversion centre situated in the midpoint of the $\mathrm{C}-\mathrm{C}$ intra-annular bond (Fig. 1). The molecule is not planar, the dihedral angle between the phenyl rings is $50.1(1)^{\circ}$. The oxime group is in the E-position with respect to the OH group and forms an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. The $\mathrm{C}=\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ bond lengths are normal for oximes (Onindo et al., 1995; Sliva et al., 1997; Mokhir et al., 2002).

In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the phenolic groups of the translational molecules link the molecules into chains propagating along [001]. The crystal structure is further stabilized by the intermolecular stacking interactions between the phenyl rings with centroid-to-centroid distances equal to $3.93 \AA$ resulting in layers parallel to the $y z$ plane (Fig. 2).

Experimental

2,2'-Dihydroxybiphenyl-3,3'-dicarbaldehyde ($2.57 \mathrm{~g}, 10 \mathrm{mmol}$) dissolved in 20 ml of methanol was added to a solution obtained by dissolving sodium $(0.51 \mathrm{~g}, 22 \mathrm{mmol})$ in 10 ml of methanol with addition of hydroxylamine hydrochloride $(1.52 \mathrm{~g}$, 22 mmol). The mixture was stirred for 30 min and filtered. In $2-3 \mathrm{~h}$ the filtrate produced white crystalline precipitate which was filtered off and dried. Yield 85%. Single crystals suitable for X-ray analysis were obtained as a result of recrystallization from aqueous (40%) ethanol. 2,2'-Dihydroxybiphenyl-3,3'-dicarbaldehyde was synthesized according to the reported method (Wünnemann et al., 2008).

Refinement

The $\mathrm{O}-\mathrm{H}$ hydrogen atoms were located from the difference Fourier map and refined isotropically. The $\mathrm{C}-\mathrm{H}$ hydrogen atoms of the phenyl rings were positioned geometrically and were constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$, and $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

supplementary materials

Figures

Fig. 1. A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of an arbitrary radius.

2,2'-Dihydroxy-1,1'-biphenyl-3,3'-dicarbaldehyde dioxime

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=272.26$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=24.2780$ (14) \AA
$b=3.9279$ (4) \AA
$c=16.6466(12) \AA$
$\beta=129.652(6)^{\circ}$
$V=1222.2(2) \AA^{3}$
$Z=4$
$F_{000}=568$
$D_{\mathrm{x}}=1.480 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 516 reflections
$\theta=4.5-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, pale-yellow
$0.19 \times 0.09 \times 0.06 \mathrm{~mm}$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
1388 independent reflections
812 reflections with $I>2 \sigma(I)$
Monochromator: horizontally mounted graphite crys- $R_{\text {int }}=0.073$ tal
Detector resolution: 9 pixels mm^{-1}
$T=120 \mathrm{~K}$
φ scans and ω scans with κ offset
$\theta_{\text {max }}=27.5^{\circ}$

Absorption correction: multi-scan
$\theta_{\min }=4.4^{\circ}$
(SADABS; Sheldrick, 2001)
$h=-30 \rightarrow 30$
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$
$k=-5 \rightarrow 4$

4331 measured reflections

Refinement

Refinement on F^{2}
Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.146$
$S=1.02$
1388 reflections
99 parameters
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0673 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O1	$0.50535(8)$	$0.1656(4)$	$0.11701(11)$	$0.0286(5)$
O2	$0.64023(9)$	$-0.1055(4)$	$0.07166(13)$	$0.0350(5)$
N1	$0.60748(10)$	$0.0232(5)$	$0.11062(14)$	$0.0279(5)$
C1	$0.55751(12)$	$0.2918(5)$	$0.21487(16)$	$0.0236(6)$
C2	$0.53803(11)$	$0.4208(6)$	$0.27199(16)$	$0.0235(6)$
C3	$0.59205(12)$	$0.5499(6)$	$0.37151(16)$	$0.0265(6)$
H3	0.5795	0.6439	0.4105	0.032^{*}
C4	$0.66275(12)$	$0.5455(6)$	$0.41490(17)$	$0.0269(6)$
H4	0.6983	0.6329	0.4832	0.032^{*}
C5	$0.68185(12)$	$0.4140(6)$	$0.35911(16)$	$0.0272(6)$
H5	0.7308	0.4102	0.3893	0.033^{*}
C6	$0.62978(11)$	$0.2855(6)$	$0.25813(16)$	$0.0237(6)$
C7	$0.65242(12)$	$0.1435(6)$	$0.20269(17)$	$0.0265(6)$
H7	0.7019	0.1402	0.2358	0.032^{*}
H1	$0.5270(14)$	$0.081(7)$	$0.0923(19)$	$0.042(8)^{*}$
H2	$0.5979(18)$	$-0.165(8)$	$-0.002(3)$	$0.067(9)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0229(9)$	$0.0387(10)$	$0.0217(9)$	$-0.0034(7)$	$0.0132(8)$	$-0.0059(7)$

O2	$0.0324(10)$	$0.0468(11)$	$0.0296(10)$	$0.0008(8)$	$0.0217(9)$	$-0.0042(8)$
N1	$0.0299(11)$	$0.0321(11)$	$0.0277(11)$	$0.0015(9)$	$0.0212(10)$	$-0.0001(8)$
C1	$0.0244(13)$	$0.0233(12)$	$0.0192(12)$	$-0.0006(9)$	$0.0121(11)$	$0.0013(9)$
C2	$0.0235(12)$	$0.0218(12)$	$0.0213(11)$	$-0.0002(9)$	$0.0124(11)$	$0.0017(9)$
C3	$0.0306(14)$	$0.0266(13)$	$0.0231(12)$	$-0.0015(10)$	$0.0176(11)$	$0.0000(10)$
C4	$0.0253(13)$	$0.0301(13)$	$0.0178(11)$	$-0.0044(10)$	$0.0103(10)$	$-0.0024(9)$
C5	$0.0211(12)$	$0.0290(14)$	$0.0257(12)$	$-0.0018(10)$	$0.0123(11)$	$0.0011(10)$
C6	$0.0237(13)$	$0.0246(12)$	$0.0204(12)$	$-0.0012(9)$	$0.0130(11)$	$0.0020(9)$
C7	$0.0207(12)$	$0.0311(13)$	$0.0252(12)$	$-0.0008(10)$	$0.0136(11)$	$0.0008(10)$

Geometric parameters (${ }^{(},{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.368(3)$
$\mathrm{O} 1-\mathrm{H} 1$	$0.91(3)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.402(2)$
$\mathrm{O} 2-\mathrm{H} 2$	$1.00(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.276(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.399(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.409(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.396(3)$
$\mathrm{C} 2-\mathrm{C} 2$	$1.490(4)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	$107.9(16)$
$\mathrm{N} 1-\mathrm{O} 2-\mathrm{H} 2$	$101.8(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{O} 2$	$112.73(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$118.89(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$120.46(19)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.6(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.0(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$120.9(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$121.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	118.9
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.69(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$0.3(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$-178.47(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.7(3)$
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.39(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.3(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.3(3)$
Symmetry codes: $(\mathrm{i})-x+1, y,-z+1 / 2$.	

$\mathrm{C} 3-\mathrm{C} 4$	$1.373(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.376(3)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.402(3)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 6-\mathrm{C} 7$	$1.453(3)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.7(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.83(19)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.8(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$122.31(19)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$121.6(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{H} 7$	119.2
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.2
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-178.9(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-0.8(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$177.9(2)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$-179.16(18)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-179.9(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$1.5(3)$

Hydrogen-bond geometry ($A,^{\circ}$)
$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$

$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$0.91(3)$	$1.79(3)$	$2.609(2)$	$148(2)$

sup-4

supplementary materials

$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}{ }^{\mathrm{ii}}$
Symmetry codes: (ii) $-x+1,-y,-z$.

Fig. 1

supplementary materials

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2095).

